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ON THE KINETIC THEORY OF WAVE PROPAGATIO
IN RANDOM MEDIA
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This paper considers the theory of the multiple scattering of waves in extensive random media, The classi-
cal theory of wave propagation in random media is discussed with reference to its practical limitations,
and in particular to the inability of the lowest order approximation to the Bethe-Salpeter equation,
which describes the propagation of correlations, to account for conservation of energy. An alternative
kinetic theory is formulated, based on the theory of energy transfer processes in random media. The
proposed theory satisfies conservation of energy and the Second Law of Thermodynamics. It is illu-
strated by a consideration of three problems each of which is difficult or impossible to treat by classical
scattering theory. These involve the transmission of energy through a slab of random medium; the
scattering theory of geometrical optics; and scattering by a randomly inhomogeneous half-space.

1. INTRODUCTION

The basis of the modern kinetic theory of gases originated with the work of Maxwell and Boltz-
mann in the nineteenth century. The fundamental equations of the subject were derived by
means of apparently crude phenomenological considerations of the energy and momentum
exchanges between the individual molecules of a gas during a classical binary collision. Yet the

theory was remarkably successful in predicting the properties of many of the common gases

.

A large body of problems of a similar nature occurs in the general area of wave propagation
phenomena. For example the presence of nonlinear terms in a wave equation can produce
resonant interactions between ‘wave packets’ (Phillips 1960). The net result is generally one in
which there is a transfer of energy between the interacting modes together, possibly, with the
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524 M. S. HOWE

creation of new wave packets. Success in describing such processes by means of equations of the
Boltzmann type, however, has been limited to cases where the hypothesis of ‘molecular chaos’
is a reasonable one. This hypothesis asserts that interacting wave packets are statistically inde-
pendent, a condition which imposes severe limitations on the nonlinear wave system. In particular
it requires that the wavenumber-frequency relation for the propagating wave modes be strongly
nonlinear so that, because of the resulting differences in group velocities, interacting waves spend
only a relatively short portion of their respective lifetimes actually interacting with one another
(Benney & Saffman 1966; Bretherton 1969). Clearly this rules out of consideration a great many
problems of practical importance such as especially those in acoustics.

There are many systems, however, in which the interaction between the admissible wave
modes is not described by a nonlinear term in the wave equation. We have in mind a large
class of phenomena normally termed scaitering. Deviations in the properties of a wave-bearing
medium from their otherwise constant values transfer a portion of the energy of an incident wave
into a whole spectrum of scattered waves. When the dimensions of the region containing these
deviations are large, so that cumulative multiple scattering effects are likely to be important,
it no longer makes sense to attempt to describe the propagation processes by means of a naive
scattering theory such as the Born approximation.

When, further, the deviations in the properties of the medium may be regarded as random, for
example in situations where knowledge of the inhomogeneities is restricted to a statistical descrip-
tion alone, then the scattered waves are also random and multiple scattering of one of these waves
results in a transfer of energy to yet other random modes. If we can ensure that the distance
travelled by a scattered wave packet during its lifetime is large compared with the correlation
scale of the inhomogeneities of the medium, then for most of its lifetime a wave packet is propa-
gating through parts of the medium with which it is uncorrelated. In other words, we have
essentially a state of affairs in which a random wave field is interacting with a random medium,
and the basic interacting elements are statistically independent. This constitutes an analogue of the
classical notion of molecular chaos. It would seem to be desirable, therefore, to inquire into the
possibility of developing a kinetic theory to describe the scattering processes in such an extensive
random medium.

The object of the present paper is to propose such a theory.

Section 2 consists of a critique of the classical theory of wave propagation in random media,
together with an outline of the theory of energy transfer processes which has been considered in
detail in an earlier report (Howe 1973). This preliminary material in conjunction with a simple
qualitative argument enables us to write down the desired kinetic equation (§3). The same
equation can also be derived by means of a more elaborate multiple scale procedure. That
analysis is discussed separately in a companion paper (Howe 1972 4) since its inclusion here would
serve only to obscure the relatively simple physical arguments involved. Then follows a general
discussion of the principal properties of the kinetic equation (§4). In particular the principle
of conservation of total wave energy is established and an appropriate form of Boltzmann’s
H-theorem deduced. Finally, the theory is illustrated in §5 by a consideration of three simple
problems each of which is difficult or impossible to treat by classical methods. These problems
involve the transmission of energy through a slab of random medium; the scattering theory of
geometrical optics; and reflexion of an incident wave from an inhomogeneous half-space. It
should be remarked that Budden & Uscinski have recently discussed a series of closely related
problems with regard to the propagation of electromagnetic radiation through a medium con-


http://rsta.royalsocietypublishing.org/

P N

y

o

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
P 9

‘/\\
A\
/N

Y |

P9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THEORY OF WAVE PROPAGATION IN RANDOM MEDIA 525

taining weak random irregularities in refractive index (Budden & Uscinski 1970, 1971, 1972).
Their work includes a detailed analysis of multiple scattering and is essentially complementary
to the material presented here.

The present analysis is restricted to problems in which the inhomogeneities of the medium are
random functions of position alone. This simplifies the arguments and also eliminates complications
arising from spectral line broadening effects. Actually it is a relatively straightforward matter to
include randomness in time in certain circumstances, and this indeed has important applications
to such problems as spectral broadening of sound propagating through a turbulent jet (Howe

1972b).

2. WAVE PROPAGATION IN RANDOM MEDIA; ENERGY EXCHANGE PROCESSES
2.1,

In this section basic results regarding the propagation of waves in a conservative randem
medium are reviewed. The analysis is restricted to a consideration of a rather wide class of linear
scalar wave equations. However, it should be borne in mind that the final results can readily be
extended to cover more complicated systems specified by a vector field variable.

In an extensive random medium it is essential to recognize that the cumulative effects of even
quite small random inhomogencities in the properties of the medium can rapidly destroy any
coherence initially associated with an incident wave. Therefore an attempt to specify the effects
of the inhomogeneities by means of a perturbation expansion will require a large number of terms
in order to ensure the elimination of an initially coherent wave. The problem is actually so com-
plicated that the calculation of the evolution of the complete wave field by such a procedure is
impracticable. Itis feasible only ifit is possible to sum all the terms in the perturbation expansion.
Now the expansion describes multiple scattering processes and must contain secular terms
(in fact an infinite number) ; in general there is no guarantee that it can be summed in closed form.
In order to effect a summation it is generally necessary to confine attention to a limited descrip-
tion of the wave field.

This is in terms of the ensemble average field, obtained by averaging over an assembly of statistic-
ally equivalent random media. When the formal perturbation expansion is averaged it becomes
clear that an infinite subseries of non-secular terms M, say, can be extracted, and the expansion
expressed as an infinite geometrical progression in powers of A/ and the free space Green func-
tion, successive terms of which are of increasing secularity. This new expansion, however, can be
recognized as a formal perturbation solution of a renormalized, non-random wave equation for the
ensemble average field (Frisch 1968).

It is natural therefore to partition the wave ficld, ¢, say, into an ensemble average, or cokerent,
component ¢, and a fluctuating part ¢’ which describes the deviation of ¢ from the mean ¢
in a given realization of the medium, i.c.

p=d+¢. (2.1)

The renormalized equation describes the propagation of the mean wave field ¢. It possesses
physical characteristics which are not present in the original wave equation. The most important
is the presence of an energy dissipation term which accounts for the irreversible transfer of energy
from the mean field to the random waves ¢’. Secondly, the group velicity of a mean field wave
packet is less than that for propagation in free space. This is because in a particular realization

39-2
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the wave will be disturbed from its free space geodesic path of propagation by the inhomo-
geneities, and consequently on average takes longer to cover a specified distance.

The equation for the mean field is familiar in Quantum field theory where it is known as the
Dyson equation (Dyson 1949). Various approximations to the Dyson equation have been obtained
independently by several authors (e.g. Meecham 1961; Bourret 1962; Keller 1964; Frisch 1968;
Howe 19714). Actually if a small dimensionless parameter ¢ is introduced as a measure of the
magnitude of the random inhomogeneities, then the leading term in the non-secular subseries
M s oforder €2, and the approximation to the Dyson equation obtained by neglecting the remain-
ing terms in M is called the binary interaction equation. This is normally the only version of the
Dyson equation amenable to analytic investigation. ’

To be more specific consider a scalar wave equation represented symbolically by

Lg = Gg. (2.2)

We adopt the convention that in this equation terms involving the random inhomogeneities of
the medium are all contained in the linear operator G, and therefore that the linear operator
L describes propagation through a uniform medium (‘free space’). Thus G represents an O(e)
modification of the free space wave equation L¢ = 0. In particular, since the random terms de-
scribe parameter fluctuations about their constant mean values, this implies that the ensemble
average of G, namely G, vanishes identically.

The binary interaction approximation to the Dyson equation is then

L} = GLGP, (2.3)

where L1 is the retarded time Green function operator inverse to L (see, for example, Howe
1971a). This equation may be expressed as the pair

Lp =G¢'; Ly =G (2.4a,b)

When the formal solution of (2.44) is inserted into the first of these equations we obtain pre-
cisely the binary interaction equation (2.3) Now (2.40) is the local Born approximation describing
the generation of the random waves ¢’ by the interaction between the inhomogeneities and the
mean field ¢. Of course that equation neglects multiple scattering of the random waves so genera-
ted, and is therefore unsuitable for determining the random field per se. The formal use of the
solution ¢’ in equation (2.44) therefore throws light on the physical significance of the binary
interaction approximation. The mean value on the right of (2.44) is in fact a cross-correlation
product of the random operator G(#) and the random field ¢’ at the point #, say. Thus only those
constituent waves of ¢’ which were scattered within a correlation scale [ of the point # can con-
tribute to the mean value. Here [ refers to the correlation scale of the random inhomogeneities.
Hence in using (2.45) to determine this correlation product it is implicitly assumed that multiple
scattering is not important only over distances of order /, and that the direct random field given by
(2.4b) is large compared with the contribution from the random waves which are re-scattered
within this distance ! from #. The direct field gives an O(€?) contribution, whereas these remaining
terms are at least O(e®).

2.2.
The continuous generation of the random field ¢’ implies that in many situations involving
extensive inhomogeneous regions a substantial portion of the total energy is actually contained in
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THEORY OF WAVE PROPAGATION IN RANDOM MEDIA 527

the incoherent waves. The lack of coherence suggests that it is now appropriate to try to develop
an equation for ¢2— this being a direct measure of the energy density of the whole field. A formal
analysis analogous to that outlined above (see Frisch 1968) for the derivation of the Dyson equa-
tion gives a renormalized equation not for ¢%, however, but for the two-point correlation product
o (x,8) ¢(X, T') (¢, T denoting the respective times), and is referred to as the Bethe—Salpeter equation
(Salpeter & Bethe 1951). Under certain simplifying circumstances that equation can be reduced
to an equation for ¢%, and thence to an energy transport equation. In particular it is necessary to
assume that the correlation scale /is small compared to the wavelength. Naturally this restriction
quite often precludes a consideration of problems of practical importance: significant effects
of scattering are normally expected in cases where these lengths are of the same order of magni-
tude.

As in the case of the Dyson equation it is generally only the lowest order approximation to the
Bethe-Salpeter equation (in which only the first non-trivial term of the non-secular subseries is
retained) which is suitable for analytic consideration. But even this reduced form is often diffi-
cult to treat in any but the simplest type of problem, and then usually requires further simpli-
fying assumptions, such as that mentioned above, to be imposed. A rather more serious drawback
has been pointed out by Frisch (1968). In considering the energy radiated from an acoustic
point source in an infinite random medium, Frisch shows that in the lowest order non-trivial
approximation the Bethe-Salpeter equation violates the principle of conservation of energy. Apparently
energy conservation can be assured only if al/ of the non-secular terms are retained. It seems,
therefore, that the situation can only be rectified by means of an approximation to the complete
Bethe-Salpeter equation which both conserves energy and is mathematically tractable.

It is precisely because of these difficulties that the author was led to an alternative consideration
of the problem of determining ¢ This alternative approach constitutes the core of the present
paper. Admittedly the proposed theory is itself only expected to be valid for a certain combination
of the ranges of values of the parameters describing the system, but we shall see that this includes
many cases of practical importance.

2.3.

First we develop a notation which will enable us to cover a wide range of scalar wave propa-
gation problems.
Define differential operators Q;, H;, K;, typically by

0 0 0
— Ja Jb Jc ¢
Q=i B B (2.5)

where the [, are unit vectors (possibly absent) which would be required in a description of a
system with anisotropic mean properties. The suffix j is to be regarded as a label specifying a par-
ticular operator and not as the number of differential coefficients, etc., involved in that operator.
Two operators such as H;, K; with the same suffix are distinct, but a product of the form
H;$K;, involving two such operators with the same suffix, is assumed to be a real, scalar
operator.

The adjoint operator is defined typically by

Qi=M@"'(“a%)(‘“a%)(‘a%)"" (2.6)
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A large class of scalar propagation problems in conservative random media can now be
defined by means of the Lagrangian density

2 = 334,1+6) (Q,F) -2 8,(1+8) (9) (K,
= kinetic energy per unit volume — potential energy per unit volume. (2.7)

The reason for following an approach based on a Lagrangian density is that it enables one to
make rather precise statements regarding energy conservation, etc.

In this definition §;(#), {;(#) are assumed to be stationary random functions of position x in the
medium, with |£;], |{;] ~ O(¢) (¢ < 1). They represent the deviations of the physical parameters
of the medium from their otherwise constant mean values 4;, B; respectively, so that £; = 0,
¢; = 0, where an overbar denotes an ensemble average.

The wave equation is obtained by requiring

3H ( at,ngé,Kjgé)dxdt

to vanish for variations which are zero on the boundaries of the region R of space-time. This leads
to a wave equation of the form

Lp =G (2.8)

considered earlier (sece Gelfand & Fomin 1963), where the operators L, G are given by

L= jz{—A,-c?j Q; /o — By(K H;+ K; H,)},

2.9
G = }1{147’@155 Q; 00 + B(K ;& H, + H; ¢, K)} =

Now for a system specified by a Lagrangian density such as (2.7) the energy equation may be
derived by multiplying the wave equation (2.8) by 0¢/0¢ and rearranging the terms as a time
derivative plus a divergence. This is possible because the system is non-dissipative. The method
may be extended to obtain equations describing the transfer of energy from the mean field to the
random field.

To do this first take the ensemble average of (2.8), obtaining

LP =G¢'; (2.104)
Ly’ —[Gp' —Gg'] = GP. (2.100)

If the first of these equations is multiplied by d¢/0¢ and rearranged, we obtain the following equa-
tion for the coherent field energy:

subtract this from (2.8):

aat{ 4, (Q’ ¢) % B,(H;9) (Kfa)}+div{}=—a(/)6¢, (2.11)

where the second term on the left is a divergence whose form is known in principle, but is not
important in the present discussion. Similarly, if (2.105) is multiplied by 0¢’/0f and averaged we
obtain the energy equation for the random field:

S{sia0+8) (0F) + 3BT T TP | +dv(}- ~56F. (212
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When these equations are added together we recover the ensemble average of the energy equa-
tion for the whole system. Note that in this case the terms on the right of (2.11), (2.12) combine to
give the time derivative of the mean interaction energy density, viz.

5204, (0, %) (/%) + B, EIWFT &) + (7, K,97))

together with a divergence term.

The occurrence of the cross-product terms on the right-hand sides of the energy equations is
responsible for the irreversible transfer of energy from the mean field ¢ to the random field ¢’
(Howe 1973). Observe that terms involving the random inhomogeneities £;, {; occur also on the
left-hand side of (2.12); they account for mulliple scattering of the random waves. The transfer of energy
to the random field involves only first scattering of the mean field, and the results of a detailed
analysis of that transfer process will now be recalled (for further details see Howe 1973).

Actually it is convenient to express the random operator G formally as a sum of terms of the

form ~ -
J
where
0 0 0 0
S;=8; (—55’55)’ T;=T; (6x at) (2.14)

are differential operators analogous to (2.5), 9, is a random inhomogeneity such as §; or {;, and
o; is a constant.
Cross-correlation products are then defined by

R (% —X) = n(x) 7,(X), (2.15)

and exist in this form since the 7; are stationary random processes. They are O(¢?) quantities,
but not necessarily even functions of ¥ — X. The corresponding ¢ross-spectra are given by means of
the Fourier space transform:

Dy, (k) = (%t)—f: R;;(%) e7i-*dw, (2.16)

where v is the number of space coordinates involved in the problem.
Now set

Py = g_qs (2.17)

the rate of change of mean field energy per unit volume resulting from the interaction of the field
with the random inhomogeneities, and

P, = —a—-fil_g?{a’, (2.18)

the ensemble average of the corresponding rate for the random field. These expressions are
characterized by two sets of space and time scales. The local variations in By, Py are caused by
the local variations of the phases of the various components of the mean wave field, and are un-
important as far as the question of energy transfer is concerned —they are associated with the
oscillation of the field energy between the kinetic and potential forms. Much larger scales of
variation, however, are associated with the distances and times over which significant changes in
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the amplitude of the mean field occur. Examination of the binary interaction equation for the
mean field reveals that these scales are O(1/e?). It is clear, therefore, that changes in the net rate
of energy transfer are not related to the local phase flucutations of Py, Py, but to the long term
O(1/e?) scales. This means that in working out the net rates, Py, Py should be averaged over
distances and times large compared with the scales corresponding to the local fluctuations of the
mean field (i.e. period and wavelength), but small in comparison with the scales over which
significant changes occur in the parameters of the mean field.

We shall use angle brackets, { ), to denote such an average. Then if the binary interaction approxi-
mation to the mean field, and the local Born approximation to the random field are used, it is readily

deduced that
(Py) = —<{Pr) <0, (2.19)

at least correct to O(e?), showing that the random field grows irreversibly at the expense of the
coherent field, as expected.
More explicitly, consider a mean field @ defined by a sum of propagating modes

¢ =Xa,xt)expfi(k,. 8 —w,t)}, (2.20)

with a_, = a*,, k_,
gating in the sense that k,, », are assumed to be real and to satisfy the free space dispersion relation
obtained from equation (2.8) by setting G' = 0 and putting ¢ = exp{i(k,. ¥ —,f)}, namely
L(k,,»,) = 0. Actually examination of the non-random form of the wave equation reveals
that

= —k,, w_, = —w,. In this expression the constituent waves are propa-

L(k, 0) = P(k) w* - Q(k), (2.21)

where P, Q are even, non-negative, polynomial functions of k. Further, the amplitude factors a,, («, ?)
change significantly only over distances and times of order 1/e2.
Let us now introduce the following shorthand notation. For real wavenumber vectors K, &,
and frequency o, define the quantity {k,, K}¢ by
{kp, K}i = 8;(—iK,iw,) T;(ik,, —iw,) +S;(ik,, —iw,) T;( —iK,iw,). (2.22)
Itis easy toshow that {k,,, K}%is a real function of its arguments and that
{ky, K} = {— k,, —K}4 = {K, k,}4. (2.23)

With these preliminaries we can now state the result derived by Howe (1973) for the net rate
of transfer of energy per unit volume of the medium. Howe shows that uniformly to O(e?)

(P = —{PR) =~ 27rp§0f|wp]|ap(x, 1)|2D(k,, K)S{L(K, w,)}dK, (2.24)

where the integration is over all wavenumbers K of the first scattered random modes, which are
responsible for the transfer of energy from the mean field to the random field. In this expression

Dl K) = D k) = Sl Kt (ky, K 01s(K ~ k), (2.25)

which can be shown to be non-negative, and é(x) is the one dimensional Dirac é-function.

The result (2.24) illustrates in a precise manner the mechanism responsible for the mean
energy transfer rate. In the first place the presence of the é-function implies that only the propa-
gating random wave modes play a significant rdle in the transfer process. Secondly, the integrand
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THEORY OF WAVE PROPAGATION IN RANDOM MEDIA 531

in (2.24) is non-negative so that the presence of the minus sign demonstrates unambiguously
that (Py) is negative, i.e. that the net flow of energy is indeed from the mean field to the random
field. Of course this was to be expected ; the state of disorder of the system can only be increased
by the presence of the random inhomogeneities and the corresponding increase in entropy is
guaranteed by the Second Law of Thermodynamics.

Equation (2.24) is the main result of this section. It will be used in the following section in
conjunction with a simple qualitative argument to derive a kinetic equation for an ensemble
of random wave packets.

3. THE KINETIC EQUATION FOR AN ASSEMBLY OF RANDOM WAVE PACKETS

We now present an essentially heuristic analysis of multiple scattering in a random medium.
An alternative treatment based on a formal multiple scale argument and leading to the same
conclusions is described in the companion paper (Howe 19724).

The angle bracket averaging procedure leading to equation (2.24) actually allows us to
consider the decay of an individual mode of the mean field (Howe 1973). In particular for a plane
wave _

& = a(x,1) expi{(k. ¥ —wi)}+c.c., (8.1)
(where c.c. denotes the complex conjugate of the preceding expression), we have from (2.24),
in an obvious notation,

Py = — (B> = ~ 2ol la(s, ) * [ @k, K)SLK, 0)} K. (3.2)

As a first step in deriving the kinetic equation we shall now obtain the energy equation for
&1 To do this it is convenient to write the appropriate mean field energy equation (2.11) in the
primitive form

(Be13y =~ o, (.9

obtained by multiplying equation (2.10a) for the complete mean field by 0¢,/0t and isolating
the mode @, by means of the angle bracket averaging procedure. Substituting (3.1) into the left-
hand side of this equation gives

Oa* . . 0 L0) _ i :
(-gt— +iwa )L(k—l-a—x,o)+1—a—t)a+c.c. = — (P, (3.4)

Next expand the operator L in this expression in powers of the derivatives and retain only the
first non-trivial terms, since a( %, ¢) varies slowly on the scales 1/£, 1/w. Then correct to lowest order
in these derivatives

OLdJal2  OL dla|?
—...._.__.._w_..._.

— k
o 0 V0, o, ~ W (3.5)

To interpret this result note that from the left-hand side of equation (2.11), the energy density
of the mean wave averaged over a wavelength is just

E(x,t) = [P(k) 0*+ Q(K)] |a]>+ O(c?)

oL
= w%|a12+0(62), (3.6)

40 Vol. 274. A.
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by (2.21). Using this in (3.5) and also substituting for (P§) from (3.2), we finally deduce that £
satisfies

OFE Ow OFE — 27K
B~ e [ otk K) 01K, )y ax. (3.7)
ow oL oL
Here % = —6)_15; v

is the group velocity of the mean field wave packet .

In the absence of scattering (3.7) reduces to the well-known result that wave energy propagates
at the group velocity. Since the right-hand side of (3.7) is negative the description is now one in
which the mean wave is gradually attenuated by scattering off the random inhomogeneities.

It has already been remarked that the contributions to the integral in (3.7) come solely from
the propagating wavenumbers K, and in this case from those K which can radiate at the frequency
w of the coherent wave ¢,. This is just the scattering process responsible for the generation of the
random field of wave packets.

Consider the evolution of one of these packets. Suppose that the damping scale associated with
the decay of coherence (~ O(1/€%)) is large compared with the correlation scale { of the inhomo-
geneities. Then long before the random wave packet has been dissipated by multiple scattering
it will be propagating in regions with which it is uncorrelated, and with respect to which it may be
regarded as an incident coferent wave. In other words, under the present circumstances, a random
wave packet of the form (3.1) will decay according to an equation such as (3.7) for practically the
whole of its lifetime.

A second random wave packet will propagate according to the same rule. From our inter-
pretation of the scattering integralin (3.7) we see that part of the energy scattered from this second
wave packet at (#, t) will enter the mode @, of equation (3.1) provided that the integrand of the
appropriate scattering integral is non-zero at K = k. Since this energy is uncorrelated with that of
the original wave packet, the total energy in the mode k is then obtained by simple addition of
the separate energies.

Let us now attempt to formulate these ideas rather more precisely. We have been speaking
of a discrete distribution of wave packets, but in practice energy will be distributed over a continu-
um of wavenumber vectors k. We therefore introduce an energy density function & (k, %, ¢) such that
& (k, x,t) dk is equal to the wave energy per unit volume of the medium at time ¢ and position ¥
in the element (k, dk) of wavenumber space. Then according to equation (3.7) the rate at which
energy is removed from the element (k, dk) of wavenumber space at (%, f) per unit volume is — I,

say, where
_ —2n&(k,,t)dk
- /8a)| f«p (k, K)S{L(K, 0)} dK,
i.e.from (2.21)
—2né(k, %, 1) dk
= /a % fczs (k, K)8{P(K) 0(k)* - Q(K)} dK. (3.8)

But by what has been said above, a second wave packet of energy & (K, «, ) dK per unit volume
scatters energy at a rate equal to

28 (K, %,t) dK

L o) o] 2 B)O(P(k) 0(K)*— Q(k)} dk
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per unit volume into (k,dk) at (¥,¢). Summing over all such wave packets (K, dK) we deduce
that the rate at which energy is scattered into (k, dk) at (#, t) from al/l other wave modesis given by

J = 2ndk f laL—K_% (K, B)3(P(k) o(K)?*— Q(k)} dK (3.9)

per unit volume.
Now in equation (3.8) w(k)? = Q(k)/P(k), and in (3.9) w(K)? = Q(K)/P(K). Hence com-
bining the two expressions:

I+J = l“gek f [€(K, %,1) — &(k, %, 1)] D(k, K)S{P(K) Q(k) — P(k) Q(K)}dK, (3.10)
where it has been noted that |w(k)| = |w(K)|, i.e. frequency is conserved on scattering,

D(k,K) = O(K, k),
and &(ax) = &(x)/|a].

We are now in a position to write down the kinetic equation for an ensemble of random wave
packets. To do this it is merely necessary to observe that by the above the following modified
form of equation (3.7), describing the net energy exchange processes associated with a wave packet
& (k, %,t) dk, must be adopted:

| = O 16k, %,1) dk]+g;: aa [6(k, ,0) dE] = I+J, (3.11)
1.€.
%ét(k x,1) + gzjg@@ (b, 5,) = oo Ifas (k, K) [E(K, %) — E(k, 5,1)]

x 8{P(K) Q(k) — P(k) Q(K)}dK. (3.12)

This is the desired kinetic equation describing multiple scattering in the random medium.
In general, it is to be solved subject to boundary conditions which specify the initial distribution
of wave energy with position in space and in wavenumber space.

4. DISCUSSION OF THE KINETIC EQUATION

The kinetic equation (3.12) is expected to give a valid description of multiple scattering in an
arbitrary random medium provided that the correlation scale / of the random inhomogeneities
is small compared with the length d, say, associated with the decay of coherence in the wave field.
Note again that frequency w(k) (henceforth assumed positive) is conserved in the scattering
process —a consequence of the inhomogeneities being time independent. Hence only a finite
number of wavenumbers |k| can propagate at a given frequency o, so that the condition § > [
can always be realized for sufficiently small e.

It will be remarked that the spirit of the derivation of the kinetic equation given in §3 is
closely allied to that embodied in the classical kinetic theory of gases (see Chapman & Cowling
1970, especially §17). In that theory the counterpart of our result is the famous equation due to
Boltzmann. The chief difference is in the form of the energy exchange mechanisms. The exchange
of energy amongst the various modes of the random wave field is due to the interaction of the field
with the random inhomogeneities, whereas the corresponding process for gases is a nonlinear
effect due to molecular collisions. Similar processes in random wave theory occur in the more
difficult problems associated with dynamic wave-wave interactions, to which reference has

40-2
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already been made in the introduction. Our problem is much easier in that the collision integral
on the right of (3.12) is linear in the energy density &' (k).

Actually this resemblance between the kinetic equation and the classical Boltzmann equation
is rather more than superficial. To illustrate this we shall obtain the analogues of a few well-
known classical results. This will both illuminate the structure of the equation and emphasize
the connexion with thermodynamic concepts.

Boltzmann’s H-theorem

Define the wave packet ‘number density’ n(k, &, ¢) by

&(k, %,1)

n(k, %,t) = MR

(4.1)

where £ is Planck’s constant which is introduced to make the equation dimensionless. Then the
entropy associated with a wave packet, S per unit volume of medium, is given by

Sk = —n(k, x,t)In (n(k, %,t)) dk, (4.2)
(see, for example, Landau & Lifshitz 1959). The total entropy density is therefore given by
- f n(k) In [n(k)] k. (4.3)
Also the entropy flux associated with a packet is
Ow
Sk = ~3 n(k, x,t) In[n(k, ,¢)] dk, (4.4)
and the total flux is S = g(,: (k) n(k)In[n(k)] dk. (4.5)

We may now form the equation of conservation of entropy:

—+d1vS fﬁ 0 [1+1n[n(k)]][ (k) + g:.g—f(k)]dk. (4.6)

With the use of the kinetic equation (3.12) this becomes

%‘79 +divs = —= f %z—k)‘é [1+Inn(k)][€(K) — & (k)] D(k, K)S({P(K) Q(k) — P(k) Q(K)}dK dk

=—n f %(Lm-én +Inn(K)][&(k) - €(K)] O(K, k) 5{P(k) Q(K) — P(K) Q(k)} dk dK.

Adding these two expressions, and noting that for non-trivial contributions to the integrals
(k) = w(K), and also that @(k, K) = ®(K, k) we find that

S rdivs =~ [ s (B ) [n(R) —n(8)] @00, K) S{P(K) Q(k) — P(E) QUK)}IK .

(k) \n(K)
(4.7)
Next the argument familiar in the classical kinetic theory of gases, namely, that
n(k)
[n(K) —n(k)]In (m) <0 (4.8)

leads to the conclusion that 0S/ot+div S > 0. (4.9)
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This is just an expression of the Second Law of Thermodynamics, and states that the total en-
tropy of the system of wave packets cannot decrease. By associating a quantity H with —§ this
becomes the usual form of the Boltzmann H theorem; reference to the classical analysis may be
made to §4.1 of the treatise of Chapman & Cowling (1970).
Notice also that the total entropy is conserved provided only that the left-hand side of (4.8)
vanishes identically, i.e. for
6K, x,t) = E(k, x,1), (4.10)
where (K) = w(k). In other words, when there is equipartition of energy amongst all the admissible
modes of each frequency. Actually the form of the dispersion function (2.21) also implies that
the divergence term in (4.6) would then be identically zero, so that the distribution of energy is
also independent of position and time.
The equality (4.10) implies also that
& (k) B(K, k) S{P(K) Q(k) — P(k) Q(K)}dK dk = &(K) B(k, K)5{P(k) Q(K) - P(K) Q(k)}dkdK,
(4.11)
which is an analytical expression of the principle of detailed balancing. This states that in equilibrium
the wave energy scattered into the element (k, dk) from the element (K, dK) is exactly balanced
by the inverse process.
Since functions of w(k) are the only quantities conserved on scattering, it is clear that steady-
state solutions of the kinetic equation must have the form & = & (w(k)).

Conservation of energy
In constructing the kinetic equation (3.12) care was taken to ensure that locally there is an
energy balance in the scattering process. This means that globally solutions of the equation should
also satisfy the condition of conservation of energy. That this is indeed the case is established by
multiplying equation (3.12) by dk and integrating over all k. By symmetry the double integral

i ff%@@(k, K)8{P(K) Q(k) — P(k) Q(K)}dK dk

vanishes identically, leaving the macroscopic energy conservation equation:
o f & (k) dk + div j % (k) 6k ke = o, (4.12)

in which variations in the total wave energy density féa (k) dk are balanced by the net flux
of energy represented by the divergence term. In this respect, therefore, the kinetic equation
formulation of multiple scattering is seen to be superior to the lowest order approximation to the
Bethe—Salpeter equation discussed in §2 which, on the contrary, does not appear to conserve
energy.

Consider next the problem of scattering of very short waves, i.e. those waves for which a typical
wavenumber k satisfies k& > 1. Provided that € the parameter associated with the magnitude of
the inhomogeneities of the medium, is sufficiently small, it is still possible to ensure that the dis-
sipation scale ¢ is large compared with the correlation length /, so that the present theory should
still be applicable. This case is significant because the scattered field is dominated by ‘forward
scatter’, in which practically all of the scattered energy propagates in the same direction as the
incident wave. This occurs since we are really in the limit of ‘geometrical optics’ in which varia-
tions in the properties of the medium are slow on a scale of wavelength. The major part of the
scattered field should now be interpreted as a phase shift which is due to the fact that the wave is
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travelling at the slowly varying local group velocity. Classical scattering theories, in assuming that
all the scattered energy is lost from the incident wave, therefore predict the embarrassing result
that the incident wave is rapidly annihilated, whereas it is actually only the initial cokerence which
is destroyed, most of the scattered energy still propagating along the geometrical optics path.
Equation (3.12) shows that such forward scatter anomalies are absent from the present theory,
since in the forward direction & (K) = &(k) and the integrand of the energy exchange integral
is exactly zero. This aspect of the problem will be examined further in the next section. It suffices
to suggest here that the present approach appears to have application to the theory of sonic boom
propagation through the turbulent atmospheric boundary layer of the Earth.

Actually the case considered above is closely related to the problem of propagation through
a medium whose mean properties vary slowly in space. In that case the kinetic equation must be
modified to take account of the variation in the wavenumber k of a wave packet produced by the
variations in the mean properties of the medium. The appropriate form of the equation is then

ow 08 ow 0&
at (k) E)lc ax (k) — f)x E)k AL

o j [6(K) - 6(k)] D(k, K)S(P(K) Q(K) — P(k) Q(K)}AK.  (4.13)

Finally we note the limitations to be observed in applying the kinetic equation to bounded
regions of random inhomogeneities. We have in mind problems which, though posed in an
unbounded medium, are such that only finite or semi-infinite regions contain inhomogeneities.
A careful analysis reveals that the kinetic equation (3.12) is still expected to be valid in such a
region except within a layer of thickness / of the boundaries. Since it is assumed that / < d, scatter-
ing processes are not significant in such boundary-layer zones. Alternatively: such a layer has
infinitesimal width on a scale of order 1/¢2. Note also that in free space equation (3.12) remains
valid with the right-hand side set equal to zero.

In connexion with the scattering of an incident wave by a bounded region of inhomogeneities,
the following remarks are in order. If the incident wave has wavenumber K, the corresponding
energy spectrum consists of a ‘spike’ at k = k,. When the wave interacts with the inhomogenei-
ties in accordance with (3.12) it excites all possible wavenumbers k satisfying L(k, w(k,)) = 0.
In general, the spectrum of the scattered radiation will consist of several spikes defined by this
equation. When the incident wave is ‘switched on’ it excites these modes which proceed to
radiate as a scattered field. Equilibrium is attained when the energy extracted from the incident
wave by the inhomogeneities is precisely equal to that radiated into free space in the scattered
field.

5. ILLUSTRATIVE APPLICATIONS OF THE THEORY
5.1

The object of the present section is to illustrate several important aspects of the kinetic theory
of multiple scattering. We shall confine ourselves to simple, non-dispersive media where if ¢ denotes
a scalar field variable, then the wave system is governed by a Lagrangian density of the form

2 = galt+60] (%) -3(55) (5.1)

In terms of the general definition (2.7) this involves three differential operators @, H, K, say,
givenby Q@ = 1, H = K = 9[0x,.
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Equation (5.1) defines a classical wave-bearing system. When only one space dimension is
involved it may be regarded as describing propagation along a stretched string whose density is a
random function of position:

R¢1+E(x) 0%

W e ow (5.2)
2
In three dimensions we have Vig — -1-+—c§(ﬂ%—§ =0, (5.3)
where V2 = 02[0x2 4 02[0y? 4 02[0z2
With respect to the notation of §2
£(v) &
C="0 o
(5.4)
10 02
L=—amtar

and it is a simple matter to deduce from (2.13) and (2.25) that

B(k,K) = (0]0)t D(k—K) = Fd(k—K), (5.5)
where if R(x—y) = (%) £(3),
then Dk = @%R f " R exp[ -ik.4] ds, (5.6)

and 7 is the number of space dimensions involved in the problem (one or three in the cases to be
considered below).

It follows from equation (3.2) that the mean rate of decay of an ensemble average wave packet
of the form _

& = a(x,t) exp[i{k. ¥ — ckt}] +c.c.
(where we have used the dispersion relation L(k, w) = w?/c2—k? = 0 to eliminate the frequency
) is given by
(P> = —2ma|2 kS f B (k- K)3(k*— K?) dK. (5.7)

Using this result and the argument of § 3 we can now write down the appropriate kinetic equation,
in which we make the formal substitution

&k, %,1) dk = w%(k, ) |a|? = 2k2|al?, (5.8)
namely, %‘f () +%.g§ (k) = mok® f ®(k—K) [6(K) — & (k)]0(k— K?) K. (5.9)

This is an extremely simple integro-differential equation describing the evolution of the energy
field. The advantage of using this equation lies in the possibility of demonstrating in a fairly
straightforward manner certain of the fundamental implications of the theory. The following
discussion will be restricted to a consideration of three rather elementary problems which are,
however, extremely cumbersome, if not impossible, to treat by classical scattering theories.
The first two problems will deal with the case of propagation in one dimension, and then finally
we shall consider a three dimensional problem concerning scattering by an inhomogeneous
halfspace.
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5.2. Transmission and reflexion by a slab of random medium

The implications of applying the kinetic equation to bounded random regions have already
been referred to in §4. Consider the case of one-dimensional propagation in which only a slab-like
region # of width £, say, contains random inhomogeneities (equation (5.2)). If / denotes the
correlation scale of these random inhomogeneities, then there will be a significant scattered
field provided that 2 > I.

The integral on the right of the kinetic equation (5.9) can be performed immediately in the one-
dimensional case using the properties of the Dirac delta function, so that the kinetic equation
assumes the especially simple form

aa—-(f (k) +csgn (k) %@; (k) = §mck® @ (2k) {€(—k) - E(k)}, (5.10)
within the region #, and
& o0&
ﬁ(k) +csgn (k)a—x(k) =0 (5.11)

outside Z.

Suppose that the region Z extends over the range 0 < x < %, and consider the steady state prob-
lem of a plane wave for which £ = k;, > 0 incident on Z from x < 0. The energy density of this
wave in wavenumber space may be represented by

Eo(k) = I,8(k—ky) (x < 0). (5.12)

It is evident from the form of the scattering term on the right of (5.10) that the spectrum of the
scattered field will consist of two distinct peaks at £ = + £, corresponding to forward and back
scatter at the frequency of the incident wave. Hence we may quite generally set

E(k) = I,(x)8(k— ko) +1_(x) 8 (k +ky). (5.13)

The functions I, (x), I_(x) are determined by substitution into (5.10), in which case it is readily
deduced that they satisfy

ol
3;"- =1 (I_-1,),
N (5.14)
L1,
in 0 < x < h, and they are constant elsewhere. In (5.14)
A = 1/(mk3D(2k,)), (5.15)

and is the dissipation scale associated with the intensity of the back scatter experienced by a wave.
Itis generally much larger than the relaxation scale associated with the decay of coherence.

A unique solution of the system (5.14) is determined by the imposition of two boundary con-
ditions. These are furnished by the radiation condition which requires that all scattered waves
radiate away from the scattering region Z. Of course account must be taken of the input from the
incident wave, so that the appropriate conditions are just

I =1, at x=0
+T 0 At # ’} (5.16)

I_=0 at x=#h,
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from which it follows that

x
I+ - I() (1 - m)
h—x
=1 (m)

This solution illustrates an important feature common to all steady multiple scattering prob-
lems. In the first instance I, —I_ = [;A/(h+A), and when & > A4 the steady state distribution of
energy within Z is essentially one of local equipartition between the two possible wave modes.
The balance is not exact, however, and the residual difference in intensity gives a transmitted
field in x > % precisely equal to I,4/(k+A4). Thus for £ > A very little energy succeeds in pene-
trating into # > &. The reflected intensity is then very nearly equal to that of the incident wave, as

would be expected by energy conservation arguments.
In terms of a transmission coefficient 7"and a reflexion coefficient R we have actually shown that

(0<x<h). (5.17)

<|T2|>=72-§-A—; <|R2|>=h—+l}—A—. (5.18)

In the theory of radiative transfer (Sobolev 1963) (|R|?) is usually referred to as the albedo of
the inhomogeneities. The interesting point to note about these expressions is that, unlike a
naive scattering theory approach, the transmitted field does not decay exponentially as the width
h of Z increases. Such theories neglect the contribution of ‘forward scatter’; our result indicates
that its cumulative effect produces a transmitted field which is only algebraically small.

Comparison may also be made with the recent work of Morrison, Papanicolaou & Keller
(1971) concerning the calculation of the mean power transmitted through a random slab. That
paper contains a highly sophisticated analysis based on the idea of treating the density inhomo-
geneities as a Markov process, following a suggestion due to Frisch (1968). Their analytical re-
sults are qualitatively similar to those embodied in (5.18).

5.3. The scattering theory of geometrical optics

It was pointed out in §4 that the kinetic equation is expected to remain valid in the limit of
short wavelength provided that é < [, where ¢ is the dissipation scale associated with the decay
of coherence and [ is the correlation length of the inhomogeneities. In other words, in that limit
the results of geometrical optics should be recovered. The reason for the failure of conventional
scattering theories in this case is that most, but not all, of the ‘scattered’ energy radiates in the
same direction and at the same velocity as the incident wave, and should not really be counted as
an energy loss.

On the other hand, the approximation of geometrical optics (or W.K.B. approximation)
would not be expected to be efficient for very large distances and times. Indeed that theory as-
sumes that a wave packet propagates through a slowly varying medium without significant
attenuation due to scattering. Such scattering certainly proceeds at an extremely slow rate, but
its effect is cumulative and ultimately dominates the evolution of the wave field. This may be
illustrated by means of a simple one-dimensional model problem which contains all the basic
features of the general case. Actually because the scattering is either ‘forward’ or ‘back’ the
interpretation is not limited to high wavenumbers in the case of one-dimensional problems. The
interpretation in two or more dimensions is restricted to large wavenumbers, however, since
JSorward scatter is only an important issue in that limit.

41 Vol. 274. A.
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Suppose that at time ¢ = 0 a wave packet localized about the origin x = 0 is created and pro-
ceeds to propagate according to equation (5.2) in the positive direction of the x-axis. The energy
density in the (£, x) phase space may be represented initially by

E(k,x,0) = I,8(x)8(k—ky) (¢ = 0). (5.19)

The presence of the function §(x) merely implies that the dimensions of the wave packet are small
on a scale of order 1/e2.

Again for ¢ > 0 it is evident that the spectrum of the wave field has the form given in (5.13),
except that the functions I, I_ depend also on the time, and satisfy

aaf;_i_ %c_ ) (I_—1,),
ol oI c (5.20
e === L),
with I_ =0, I, = [,&(x) at ¢t = 0.
Setting I, = J e it is an easy matter to show that
2 2 2
aaéi_czaa;i“%éji =0, (5.21)

which is the well-known Telegraphist’s equation (Webster 1955). By means of equations (5.20)
and the initial conditions we deduce that the appropriate initial conditions for J_, say, are

oJ_ ¢
J_= O, —ét—'—-‘-‘zloa(x) at = O.
Hencefor¢ > 0,

J_= Q%H(ct-— EDRA (ﬁ/—(—czt%—ﬁ),

ie.

= ho Het— o) 1, (M;:ﬁ)) ¢-otid (5.22)

(Webster 1955, p. 253). Similarly, we can show that

I, =1, 8(x x —ot) e—°t4 4 I()H l D J;+§;z ( 02152—362))6—6”41. (5.23)

In these results I, I, are modified Bessel functions of the first kind, and H is the Heaviside unit
function.

These solutions illustrate in a rather precise fashion the effects mentioned above. First recall
that 4 is a dissipation scale associated with the strength of back scatter (equation (5.15)). When
the wave packet has travelled distances ¢f which are small compared to 4 the solutions indicate
that the field consists essentially of an unmodified wave packet together with a weak ‘tail’
inits wake. Actually this tail is diffusing into x < 0 at the same speed of propagation of the packet.
It consists of waves (5.22) propagating in the negative x-direction, initially generated by back
scatter, together with waves moving in the same direction as the incident packet (second term of
(5.23)) generated by multiple scattering.

When the packet has travelled several scales 4, the exponential factor in the solution shows that
the energy content of the wave packet becomes negligibly small. The Bessel function terms in
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(5.22) and (5.23), however, do not decay so rapidly, and indeed now dominate the field. In fact

as ct/x becomes large
e—x?24ct

L= L= g ay

(5.24)
indicating that the ultimate distribution of energy is one of local equipartition between both
possible wave modes. The field now consists of a ‘cloud’ of energy gradually diffusing to infinity.
We therefore conclude that the initial concentrated energy distribution has been dispersed
uniformly, and that the wave packet may be assigned a ‘half-life’ 7 = A/c. The latter may be re-
garded as the time over which geometrical optics would be expected to give an efficient repre-
sentation of the wave field. It is clear from the definition of 4 given in equation (5.15) that for
sufficiently large wavenumber £, 4 can be very large, since k3 @(2k,) — 0 as k, — co.

5.4. Scattering by an inhomogeneous half-space

Let us now consider a more complicated problem involving a three-dimensional random
medium specified by equation (5.3). It will be assumed that the random inhomogeneities occupy
only the half-space x > 0. Then a plane wave incident on this region will give rise to a scattered
field in the free space # < 0. Weshall use the kinetic theory to determine the angular distribution of
this scattered field, and examine also the general properties of the field established within the
random half-space. .

free random

space half-space

Ficure 1. A plane wave is incident on the inhomogeneous half-space at an angle of incidence 6,. The wavy lines
represent the field scattered back into free space.

Now for a problem that is steady in time the kinetic equation (5.9) assumes the form

E.g—f (k) = nk3f¢(k—K) [6(K) —&(k)]6(k%— K?) dK, (5.25)
in # > 0, where £ = k/k. In the case of an incident plane wave the spatial dependence of &(k)
must be with respect to x alone, so that if k makes an angle 6 with the positive direction of the x-

axis we have:

cos 0%§ (k) = n/c"f(D(k—K) [6(K)—-&(k)]6(k*— K?) dK, (5.26)
inx > 0.

The details of the solution of this integro-differential equation depend on the form of the
spectrum @ (k) of the random inhomogeneities, but the analysis can be simplified if it is assumed
that the wavelength of the incident wave (and hence also of the scattered field) greatly exceeds

41-2
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the correlation length of the inhomogeneities. This means that in (5.26) @(k— K) may be re-
placed by @(0). (For a discussion of the opposite limit, involving high-frequency scattering,
see Howe 19725.)

Suppose that the plane wave incident on the half-space from ¥ < 0 has the form

exp {i(ky. ¥ —ckyt)}.

Then it may be assumed that its energy spectrum with respect to a suitable system of units is
given by
Eok) =8(k—Fk,) in x<O. (5.27)

Choose a system of polar coordinates (£, 0, ¢) in wavenumber space, in which 6 is measured
from the positive direction of the x-axis, and such that k, = (g, 0y, 0) with 0 < 6, < }m. Then
alternatively we have

&o(k) =8(0—00)3(9) O(k— ko) [(K*sin 0)

or, if 4 = cos 0, p, = cos by, equivalently,

Eoll) = L,3(u— o) 8(0) 8Lk — ky), (5.28)
where [ is a constant. Thus the directivity, I,(u, ¢), of the incident wave is defined by
I, ) = Iod(pe — o) 8(9)- (5.29)

The scattered field has the same frequency ¢k, as the incident wave, and we may therefore de-
note the total energy density of the wave field in the random half-space by

E(k) = I(p, 0, %) 0k — k), (5.30)

where I(u, ¢, x) is the directivity of the field. Substituting this expression into the kinetic
equation (5.26), and using the approximation @(k—K)=®(0), then gives

oI _
:”'6;6 (/’% ¢, X ) +AI 2 CP: 4 Af—ld‘u’ I /"’ P, % ) ch, (5'31)
where 4 is the relaxation length assoc1ated with the decay of coherence of a plane wave,

I
namey A = 1/(2r2k4D(0)). (5.32)

To determine the properties of the scattered field we transform equation (5.31) into the Milne
diffusion equation of radiative transfer theory (Tait 1964). Set

1 2 .
p(x) = f " da[ 1w d, (5.33)
which is proportional to the total wave energy per unit volume of medium. Then (5.31) becomes
of 1 1
ﬂé‘;.(ﬂa P, ) +Zl<lu, ¢y %) = mp(x), ‘ (5.34)

which may be integrated to give

It 9,) = Al g) e+ [P ctmrag, (x> 0, (5.35)

where A(p, ¢) is an arbitrary function of u, ¢. This function can be determined by applying the
appropriate radiation condition.
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Consider first the case 4 = cos @ > 0,i.e., where I(4, o, x) is the directivity of waves propagating
in the positive direction of the x-axis. Clearly the condition that scattered waves must radiate
away from the scattering region implies there can be no contribution to I(4, ¢, x) from the scattered
field at x = 0; at this interface the only wave propagating to the right is the incident wave. In

I I, 9,0) = Iy8(u—po)8(0) (1 > 0). (5.36)
Hencefor s > 0, A, 9) = 81— o) 8(9)- (5.37)

Next consider waves propagating in the negative x-direction, for which g = cos6 < 0. We
can obtain the appropriate form of the radiation condition here by noting that, if the scattering
region occupied only a finite length 0 < x < A, say, of the x-axis, then no radiation could enter
that region from & > A, i.e. I(, ¢, k) = 0 (# < 0). Using this in (5.35), and allowing /4 — oo, then
gives

—1 [
= £l4
Alno) = g | o @ et (5.39)
forpu < 0.
Thus equation (5.35) now becomes
1 x
0y ,3) = Td{ = 1)) e+ [ () cs=mmsndg (> 0),
" #Jo (5.394, b)

1
My 0 %) = =g | pE) 67 dE (p < 0),

for x > 0.

This system can be transformed into an integral equation for the total energy density p(x) by
integrating both equations with respect to ¢ over (0, 2x), and then integrating (5.394) with
respect to z over (0, 1), and (5.395) over g = — 1, 0, and adding to give

px) = Iye—aro 4 f :p(g) Vix—£)dE (x> 0), (5.40)
- 11 du
where the kernel V(x) is given by V(%) = EZf e 'x”"/‘7. (5.41)
0

Equation (5.40) is the inhomogeneous Milne equation, and may be solved by the method of
Wiener—-Hopf (Noble 1958).

Let us first give the following definitions which are familiar in the theory of the Wiener—-Hopf
technique. For a function f(x) define the half-range functions f, (x), f_(x) by

Jilx) = H(x) f(x), S-(x) = H(—x)f(%), (5.42)
where H(x) is the Heaviside unit function.
Suppose that f(x) decays exponentially as || = oo, then the kalf-range Fourier transforms

f+(K> = 2_17.rf0°°f(x) elkz dy = —2—17—tfiowf+(x) ek dx,
1[0 1 © (5.43)
f—(K) = é‘;f_wf(x) elkx dy = -Q_Rf_wf"(x) el dy,

exist, and in particular £, («) is a regular function of « for Im (k) > —r,, for some 7; > 0, and
Jo(k) is regular in Im (k) < T, for some 7, > 0. Also the following inversion formulae hold:

File) = | Fule)y e e (5.44)
(Noble 1958).
41-3
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Now consider equation (5.40) which is valid only for x > 0. Set p, (x) = H(x) p(x), and define
p—(x) by

p() = H(=3) [ (6 Vis—£) . (5.45)
Then equation (5.40) can be expressed in the equivalent form
pul) +p3) = HW Ty [ (9 Vix—£) de. (5.46)
Take the Foqrier transform of this equation:
A {1 =2mP () () = gp bl (5.47)

Here we have used the convolution theorem (Noble 1958) to evaluate the transform of the inte-
gral term on the right of (5.46), namely, 25, («) ¥ (), where P(k) is the Fourier transform of ¥(x),

i.e.from (5.41) ! arctan (1)
arctan (4«

V(k) = o e (5.48)

Now if the energy density p(x) remains bounded as ¥ — + o0, then its half-range transform
5. (x) is regular in the upper half of the complex x-plane. Also it is readily verified from theinte-
gral formula (5.41) that V(x) ~ de~#4/x as |x| - co0, and therefore by (5.45) that p_(x) is ex-
ponentially small at x = —oo. Hence p_(«) is regular in the half plane Im («) < 7, say, where
7 > 0. Since P(«) is regular in |Im (k)| < 1/4, it follows that the Wiener-Hopf functional equa-
tion (5.47) is a relation between functions which are jointly regular in the strip 0 < Im (k) < o,
where o = min {7, 1/4}.

Following the usual Wiener—Hopf procedure we now express 1 —2n¥ (k) in the form L_ («)/
L_(k), where L, () is regular in Im () > 0, and L_(k) is regular in Im (k) < o. Then (5.47) can
be expressed in the form '

iy ApoL_(—i[Apo) _ _ I, Apo[L_(k) — L_(—i[Auy)]
T e ORI Ohy ST . (5.49)

Po(k) Lo (k) —

This equation is valid in the common strip of regularity, and the left-hand side is, in particular,
regular in Im (k) > 0 and the right-hand side is regular in Im(x) < o. Therefore by the unique-
ness of analytic continuation, the equation defines a unique regular function in the whole of the
complex k-plane.

By means of Cauchy’s integral theorem we can deduce in the usual way that

A2%c2
L, (x) =AK+ieV’(""), (5.50)
where 1442 arctan §
o) = o f:ln{(‘zé‘“) gf_ e )}d{ 551

the path of integration passing below the singularity at§ = k4. Now y/(x4) is regular and bounded
in the upper half plane, so that by (5.50) L, (k) ~ O(x) when « is large. Also the boundedness of
p..(x) implies that §_ (k) is at least O(1/k) as |k| - oo in the upper half plane. Hence in this limit
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the left-hand side of (5.49) is bounded, and the usual argument involving Liouville’s theorem
(Noble 1958) then shows that

5. () =i10Aﬂ0L—(‘i/A/40)+ M
) = STy +11L, () T L, (R)

(5.52)

where M is constant.

The constant M must be chosen to ensure that p, (x) is bounded as ¥ - +co. Now this
asymptotic behaviour is determined by the nature of the singularities of g, (k) on the real axis.
Itis clear from (5.50) that 1/L, (k) has a double pole at « = 0, and this is the only singularity
of g, (k) on the real axis. But that implies that p, (x) ~ O(x) as x - +oo (Lighthill 1958). To
eliminate the double pole set

1 .
M == 3% Apg L(~i[Apy), (5.53)
in which case
~ __Tok(Ape)* L_(—i/Ap) v
Pl =~ et L, () (5.54)
i.e. by (5.50)
s ooy _ _Lom§ L (—i[Apg) [Ax+i] s
Pl = = A ] (5.55)

Since the only remaining singularity on the real axis of g («) is now a simple pole at the origin,
it follows that p_ (x) tends to a constant value as x - + co.

To work out the precise details of the total energy distribution it is necessary to invert the
appropriate Fourier integral involving g, (k) as in (5.44). However, it is possible to derive all
essential information regarding the energy distribution from the spectral representation (5.55).

Firstlet us examine the directivity I(, ¢, x) of the field as x - + co0. To do this return to equation
(5.34) and take the positive half-range transform by multiplying by ei**/2n and integrating
over x = 0, co. From this we have

i+(:”" o, K) = A/"I(/”G (PEIO)_TA<,:/£§T:) :5+(K) . (5.56)

The behaviour of the directivity as ¥ — + 00 is determined by the nature of the ‘worst’ singu-
larity of the half-range transform 7, (4, o, «) on the real axis (Lighthill 1958). Since this is just the
simple pole at « = 0 associated with g, («), it follows readily that I(x, ¢, x) tends to a constant
value independent of p and ¢ as x - +oco. Thus for sufficiently large x the energy density p(x)
becomes constant and the directivity of the field uniform, i.e. deep inside the random half-space
the wave energy is distributed evenly amongst all possible modes (equipartition of energy), and
therefore the net flux of energy in all directions, and in particular in the x-direction, vanishes identi-
cally. This is significant because when (5.34) is integrated over all . and ¢ we obtain

o [t om
a_xf d/"f /I’I(/" P, x) d(P =0,
-1 0

1 2m
i.e. f d,uf wI(p, @, %) dgp = constant,
-1 0

and since as x — + 00 this integral vanishes, it must vanish also at ¥ = + 0. This means that in
the steady state all the incident energy is scattered back into free space.
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We can determine the directivity of the ‘reflected’ radiation by noting that it is equal to
I(n, ¢,%) (4 < 0) atx = 0,i.e. by (5.398),

I(/’% P, 0) = -rmz?f:p(g) efldp dg (5_57)

Now in the range 0 < x < 00, p(¥) = p,(x) can be expressed in terms of the half-range transform
P, (k) by means of the inversion formula (5.44). Making this substitution in (5.57) and performing
the integrations yields

1 i
I(p, 9,0) = TP+ (Z'm) (r < 0), (5.58)
i.e.from (5.55)
N(po) [1 + |1]] e,

[0+ |11 (5.59)

I(p,,0) =

where N(u,) is a function of the angle of incidence 0, = arcos (4,) alone.

free | space

S AN ARRNRANARNANAAAANNNANNN N \i\\\\\ AN VANV
l

random half-space
Ficure 2. Polar plots of the normalized directivity # () of the field scattered back into free space. Three cases
are shown for angles of incidence 6, = 0°, 60°, 80°.

Let ¢ denote the angle of reflexion then, since the directivity of the reflected field is obviously
independent of the azimuthal angle o, we may express the directivity in the form

N()[1 + cos "9] 4,
1) = cos 0, + cos & (5.60)
This can be normalized to unity in the normal direction, & = 0, by writing J(9) = I(9)[1(0)

in which case we have
(1 +cosb,) (1+cos?)

2(cos 0y +cos ¥)

JI9) = eV O—v®, (5.61)

Using (5.51) the integral for ¢r(9) can be written as

1 ?
In {sin2<p(1_ta11<;>)}d(P (5.62)

cos? @ +sin? ¢ cos?d  ’

V(O = cosﬂfo

which is readily evaluated by straightforward numerical integration.
In figure 2 the normalized directivity .# (9) is plotted for angles of incidence 6, = 0°, 60°, 80°.
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For ranges of 0, between 0°, 60° the directivity curves lic between the corresponding curves
illustrated in the figure. They show no marked preferential scattering except perhaps at smaller
values of 6, when marginally more of the scattered field radiates in the normal direction. For
angles of incidence in excess of 60°, however, there is an increasing tendency for the greater
part of the scattered field to be radiated in directions close to the plane of the interface. In all
cases the concept of a specularly reflected wave (which would dominatc an analysis based on the
ensemble average field (sce Howe 19710)) is quite meaningless.

The tendency for the scattered ficld to be confined to directions close to the plane of the inter-
face with increasing 6, may initially be rather surprising, but may be shown to be an eminently
reasonable prediction by means of the following simple argument.

free space

\\\\\\‘f AR RN R A 0148
boundary

Ficure 3. The intensity of the scattcred field emerging at P in a direction making an angle & with the normal to
the interface depends on the length of the ray OP which lies within the ‘boundary layer’.

From the forcgoing discussion of the energy density we have seen that for sufficiently large x
the energy distribution becomes uniform in dircction, with no net transfer of energy. From the
form of the half-range transform it is not difficult to see that this uniform state is established
essentially for x > Au, = A4 cos 0, 1i.c. itis over this distance that information regarding the nature
of the incident ficld is destroyed. Indced according to (5.394) the effect of the incident ficld would
be expected to decay like exp (—x/4 cos 0,), the second term on the right of that equation being
initially small, but rising steadily to an essentially uniform value when x > 4 cos §,. Since there
is no net transfer of energy within this asymptotic region we may regard the scattering proccss
responsible for the generation of the field radiated into free space as occurring within the relatively
thin boundary layer of width A4 cos 0, in which the coherence of the incident wave is destroyed.
The width of this layer evidently decreases as the angle of incidence 0, aproaches 90°.

Suppose that an obscrver examines the radiation at a point P on the interface as shown in
figure 3. Consider the intensity of that radiation at P in the direction of the line OP, say, which
makes an angle 9 with the normal to the interface. This intensity at P may be regarded as gener-
ated by scattering out of the coherent field at points Q on the line OP. If QP = s, then the inten-
sity of the coherent ficld at @, and therefore also of the radiation scattered at Q) , is proportional
toexp (—scos 3/4 cos §,).

But in propagating along QP this radiation is itsclf attenuated by scattering by an amount
proportional to exp (—s/4). Hence summing over all points Q) on OP, we deduce that the total
scattered field emerging in the direction OP at P is, in the first approximation, proportional to

A cos b,

cos ¥ +cos 0, (5.63)

fwexp [—s(cos®+cosl,)[4 cosOy] ds =
0
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When this is normalized to unity it gives a directivity.

1+cosb,

S(9) = cos ¥ +cos Gy

(5.64)
This is similar to the exact formula (5.61), and illustrates the important point that when 9 ~ 90°,
J(9) ~ sec8,, which is large when 6, is large. Clearly the physical reason for this is that, at large
angles of incidence 6,, the boundary-layer width 4 cos 6, is very small. Consequently only ray
lines OP inclined at shallow angles (9 ~ 90°) to the interface have sufficiently long segments
contained within the layer in which significant contributions to the scattered field in the direc-
tion OP can be acquired.

6. CONCLUDING REMARKS

The final example of §5 illustrates in a striking manner the differences to be expected
between the coherent scattered field, which in that case would be a specularly reflected O(e?) wave,
and the diffusely scattered random field. This casts serious doubts on the ability of renormalized
wave equations for the mean field alone (such as the Dyson equation) to account satisfactorily
for the properties of propagation in an extensive random medium, and indicates that great care
should be exercised in the use and interpretation of such equations. This is especially true at high
frequencies, and the one-dimensional transmission problem treated in §5.2 demonstrates the
importance of the random scattered component of the wave field in resolving the forward scatter
paradox.

The author considers that the kinetic theory constitutes a significant improvement on classical
theories of scattering, as well as on the method based on the use of the Bethe-Salpeter equation
for the propagation of correlations, which has been briefly criticized in § 2. The theory satisfies
the principle of conservation of total wave energy and the Second Law of Thermodynamics.
It will probably lead to a revision of many of the current ideas concerning wave propagation in
random media. Whenever extensive scattering regions are involved it appears that considerable
divergence from classical predictions must be expected to arise.

This work was supported by the Bristol Engine Division of Rolls Royce (1971) Ltd., and
was conducted while the author was a research assistant in the Department of Mathematics,
Imperial College.
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